51123

B. A. (Hons. English)/B. A. (Pass Course & Vocational) 5th Semester

(Regular/Re-Appear/Improvement)

Examination – December 2022

MATHS - III (NUMERICAL ANALYSIS)

Paper: BAM-503

Time: Three hours]

[Maximum Marks : 26

Before answering the questions, candidates should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: Attempt five questions in all, selecting one question from each Section. Question No. 9 (Section – V) is compulsory.

SECTION - I

1. (a) Given, $u_0 + u_8 = 1.9243$, $u_1 + u_7 = 1.9590$, $u_2 + u_6 = 1.9823$, $u_3 + u_5 = 1.9956$. Find u_4 . 2.5

P. T. O.

(b) Given:

 $\sin 45^{\circ} = 0.7071$, $\sin 50^{\circ} = 0.7660$

 $\sin 55^\circ = 0.8192$, $\sin 60^\circ = 0.8660$ Find. $\sin 52^\circ$ by using Newton's formula for forward interpolation.

2.5

- 2. (a) Prove that divided differences are Symmetric functions of their arguments. 2.5
 - (b) Find the polynomial of lowest possible degree which assumes the values 3, 12, 15, -21 when x has the value 3, 2, 1, -1 respectively.

SECTION - II

- 3. Derive sterling formula and use it to find f(35), given f(20) = 512, f(30) = 439, f(40) = 346 and f(50) = 243. 5
- 4. (a) If x follows a binomial distribution with mean 4 and variance 2, find $P(|x-4| \le 2)$. 2.5
 - (b) In a normal distribution, 31% of the items are under 45 and 8% are over 64. Find the mean and standard deviation of the distribution.2.5

SECTION - III

5. Given the values of an imperial function f(x) for certain values of x, find f'(93).

5

6. Using House-Holder's method, reduce the matrix

	1	4	3	
	4	1	2	to tri-diagonal form.
1	3	2	1_	

SECTION - IV

- 7. (a) Derive the formula for Trapezoidal rule. 2.5
 - (b) Evaluate the integral $\int_{-1}^{1} \frac{dx}{1+x^2}$ using Gauss Quadrature formula for n=2.
- 8. Given that $\frac{dy}{dx} = x + y^2$ and y = 1 at x = 0. Find an approximate value of y at x = 0.5 by Euler's modified method.

SECTION - V

- 9. (a) Prove that $\nabla = \Delta E^{-1}$. $1 \times 6 = 6$
 - (b) Find the binomial distribution whose mean is 3 and variance is 2.

(3) P. T. O.

- (c) State Simpson's one-third quadrature formula.
- (d) Define quarature.
- (e) Describe numerical integration.
- (f) Define interpolation and extrapolation.